Outline

* Properties of the perceptron
* Input-output pairs

* Perceptron learning method
* Perceptron learning example
* Proof of convergence

e Good material:
http://hagan.okstate.edu/4 Perceptron.pdf

9/17/2019 P-ITEEA-0011 Lecture 2 2

http://hagan.okstate.edu/4_Perceptron.pdf

Receives input through its synapsis (x)) W
Synapsis are weighted (w))

A b value biases the sum Input | Output
to enable asymmetric behavior signals .

A weighted sum is calculated

Activation function applied

m
. . T
Y =@ ;Wki Xi |~ ¢(W X) X; : input vector
=

W,; : weight coefficient vector of neuron k
by : bias value of neuron k

sigm()
f 0, : output value of neuron k
d

9/17/2019. P-ITEEA-0011 Lecture 2 3

V 3

V 4
sign()

Neural Networks

Perceptron is an Input = Output device
~ N

X |— ? ||— y

AL j’é'-';;

As opposed to Traditional Computers At Neural Networks

where
- the math of the functionality is known - the math behind the functionality is unknown
- the known math should be programmed - the functionality is “illustrated” with examples

9/17/2019 P-ITEEA-0011 Lecture 1 4

Function illustrated by examples

* Given a set of input-output pairs
X; - d; (x:inputvector; d; desired output)

x|
: B x
 Number of input vectors Blo o o
— Finite/limited set (e.g. AND function) E -
— Equivalent with a look-up-table (LUT), math known N 1 1 1

— Mathematically it is correct to define a function by listing all the 10 pairs
* Goal: generate a simpler than LUT decision making device through learning

— Infinite/open set (customers of a bank asking for a loan) N T A

age gender debt salary

— Math behind is unknown, cannot be coded directly gy s wm@ 25 100 v

* Goal: generate the function through learning Bl 22 f2 18 80 v
. . BEN 65 Mm(1) 3000 200 N(0)
* |t should predict well the output of a previously —
unknown/untested input (GENERALIZATION) . I

Good news: we can use the same learning/training method!!! 5

Linear separability

* Today, we assume that the |0 sets are linearly separable
* The decision boundary is a hyperplane

defined: / [~
T B)
W X = O |I || -.-..- IL . |
| s s ® P s
| e ogop
* Positive side of the hyperplane is classified: +1 (yes) I|".|,='.'u —e @
| L.
* Negative side of the hyperplane is classified : 0 (no). | ."I:' '."_" \‘x_
9/17/2019

|
P-ITEEA-0011 Lecture 2

Which boundary surface to use, if there are
many?

How would you
classify this data?

X2

9/17/2019 P-ITEEA-0011 Lecture 2 7

Which boundary surface to use, if there are
many?

How would you
classify this data?

X1

9/17/2019 P-ITEEA-0011 Lecture 2 8

Which boundary surface to use, if there are

many?
® °
® o
® o
° ® - o
(<}
. ° ° A Any.ofthese would
/ be fine..
/ e ®e
7 ° ..but which is best?
. o e
/ °o
())
| /
X2
P-ITEEA-0011 Lecture 2 9

9/17/2019

Which boundary surface to use, if there are

many.?
., o : Maximum Margin:
’. Define the margin
‘ o ., ©* ofalinear classifier
I as the width that
— . . .o the boundary could
> e ° ., beincreased by
. °e before hitting a
Y . data point.
X2

9/17/2019 P-ITEEA-0011 Lecture 2 10

Which boundary surface to use, if there are

9/17/2019

many?

P-ITEEA-0011

Lecture 2

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

11

What does learning mean?

Given an annotated dataset

X, 2 d,
Given the parametric equation of
the perceptron

y = sign(w'x)
Goal: find the optimal w,,,
weights (parameters), where for

each _ .
dj = Slng(Wothj)

9/17/2019

Input J

signals

P-ITEEA-0011

Output
Vi

junction

Lecture 2 12

The learning algorithm: Datasets

Training set
« Setof input — desired output pairs Xt = {x - d = _|_1}
* Will be used for training B
X~ ={x:d= 0}

Test set
* Used, when we have large set of input vectors (not used today)
e Set of input — desired output pairs
* Will be used for testing and scoring the result

We assumed that X* and X~ must be linearly separable
X" ={x: w' X > O},

We are looking for an optimal parameter set: opt

X‘:{x: w' x<0}.

opt

9/17/2019. P-ITEEA-0011 Lecture 2 13

The learning algorithm: Recursive algorithm

* We have to develop a recursive algorithm called learning,
which can learn the weight step by step, based on observing

— the (i) input,

— the (ii) weight vector,

— the (iii) desired output, and

— the (iv) actual output of the system.

* This can be described formally as follows:

w(k + 1) = P(x(k), w(k),d(k),y(k)) - Wopt

9/17/2019. P-ITEEA-0011 Lecture 2 14

7

@\Yfﬂ

The learning algorithm: Perceptron Learning Algorithm

* In a more ambitious way it can be called
intelligent, because
* perceptron can learn through examples (adapt),
* even the function parameters are fully hidden.

* Perceptron learning was introduced by
Frank Rosenblatt 1958
— Built a 20x20 image sensor
— With analog perceptron
— 400 weights controlled by electromotors

9/17/2019. P-ITEEA-0011 Lecture 2 15

The learning algorithm: Recursive steps

1. Initialization.
Set w(0)=0 or w(0)=rand
->» 2. Activation.
Selecta x, = d, pair
3. Computation of actual response
y(k) = sign(wT (k)x(k))

4. Adaptation of the weight vector
w(k + 1) = ¥(x(k), w(k),d(k),y(k))

5. Continuation

Until all responses of the perceptron are OK
9/17/20109. P-ITEEA-0011 Lecture 2

16

Weight update: very simple example

A
_[1 _ 1.
xl—_zl,dl—l, 1
—1 20 | @
* Given a 3 input vector example X2=1 5],dz = 0;
-
: . X3 = 0]rd3 = O; Q
e Assume that bias is zero —1 3
(decision boundary will cross the origo)
o A
* Random initialization wi()=[1 -o0.8];
1
Remember: the weight vector is orthogonal 20| @
to the decision boundary!!! .
Decision boundary: x,-0.8x,=0 O
Its orthogonal vectoris: (1, -0.8) D

9/17/2019 P-ITEEA-0011 Lecture 2 17

Weight update: very simple example

ﬂ%@?ﬂ
: L _J1 _ 1.
Test with the first input vector X, = [2] di =1 . \d,--y,-> 0
wi() =[1 -o0.8]; \q

y1(1) = sign(w? (1)x,) = sign ([1 —0.8] BD = sign(1—-1.6) =0

The result is not OK! Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)

Idea: add the vector pointing to the A
positively misclassified point to the
I orthogonal vector of the decision > o

20| @ boundary, to rotate it towards the point! P

w(k+1)=w(k)+x, (')
W wi(2)=[1+1 -08+2]=[2 1.2]; ’

P-ITEEA-0011 Lecture 2 18

A

Q
3

9/1r7zu1rs

Weight update: very simple example

==
@\\{/ﬂ
. : —1
* T h th = ,d, = 0;
est with the second input vector x, [)] 1 € _dy<0
wi(2)=[2 1.2]; N
Y2(2) = sign(w” (2)x,) = sign ([2 1.2] [_21]) = sign(=2 +2.4) = 1

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

! Idea: subtract the vector pointing to the A
1 negatively misclassified point to the

2 ® . orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x,

’ wi3)=[2-(-1) 12-2]=[3 —-0.8]

9/17/2019 P-ITEEA-0011 Lecture 2 19

Weight update: very simple example

@;ﬁm
* Test with the third input vector X3 = [_01],d3 =0; e \dj-yj< 0
wli(3)=[3 -0.3]; \'
y3(3) = sign(w! (3)x3) = sign ([3 —0.8] l_ol]) =sign(0+0.8) =1
The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

A

Again: subtract the vector pointing to the
1 negatively misclassified point to the
orthogonal vector of the decision 0l @ 1
boundary, to rotate it away the point!

) w(k+3)=w(k+2)-x, —=—

2 O

W (?
3 wi4)=[3-0 —-08—(-1)]=[3 0.2]; >

9/17/2019 P-ITEEA-0011 Lecture 2 20

Weight update: very simple example

e Start again: A
— Test with the again with the first vector
The result is OK!

— Do not modify!!! 201 @
— Test with the again with the second vector W
The result is OK! — g

— Do not modify!!! (
— Test with the again with the third vector 3

The result is OK!
— Do not modify!!!

e Since all input vectors are correctly classified: we are ready

9/17/2019 P-ITEEA-0011 Lecture 2 21

Formalization of the update rules

e Positive misclassification : ADD

e=dry; =1 w(k+1)=w(k)+x;

* Negative misclassification : SUBTRACT
e=dry=-1 w(k+1)=w(k)-x;

* Correct classification: DO NOTHING
e=d-y;=0 w(k+1)=w(k)

* |n general:

w(k+1)=w(k)+ € x;

9/17/2019 P-ITEEA-0011 Lecture 2 22

The learning algorithm: Adaptation

We were looking for a recursive function:
w(k + 1) = ¥(x(k), w(k),d(k),y(k))

In general: w(k +1) = w(k) + enx,

where is the error function

e(k)=d(k)—y(k)

d (k) — 0 if x(k) belongs to class X*
- |-1 if x(k) belongs to class X'

n is the learning rate
(n controls the learning speed and should be positive)

9/17/2019. P-ITEEA-0011 Lecture 2 23

and

9/17/2019

AND

P-ITEEA-0011 Lecture 2

24

Weight update strategy

7
@\\Vﬂ
Apply all the input vectors in one after the others, |
selecting them randomly

Instance update

— Update the weights after each input
Batch update

— Add up the modifications

— Update the weights with the sum of the modifications,
after all the inputs were applied

Mini batch

— Select a smaller batch of input vectors, and do with that as
in the batch mode

B

Perceptron Convergence theorem (1) *ﬁff

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore w, (stands
for w,..q) exists:

xeX": wx>0:d=1

xeX : wx<0:d=0
- Let us denote X = —x

X eX w'X>0:d=1
For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

9/17/2019. P-ITEEA-0011 Lecture 2 26

http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

S=r=t

Perceptron Convergence theorem (2) *1777’

* |dea:

— During the training, the network will be activated with those input
vectors (one after the other), where the decision is wrong, hence non
zero adaptation is needed:

(e X : w (j)x(j) <0, y=0,d=1
x(j)e X1 w(j)x(j) <0, y=0, d=1

— Note: The error function is always positive (& = 1)

9/17/2019 P-ITEEA-0011 Lecture 2 27

Perceptron Convergence theorem (3)

e According to the learning method:
* w(n+1)=w(0)+nx(0)+7x(1) +nx(2) +nx(3)+... +ux(n)

— where _
(e X w (jx(j) <0, y=-1, d=1

or
x(j)e X1 W (j)x(j) <0, y=-1 d=1
— The decision boundary will be:
nwWTx=0
which means that # is a scaling factor, therefore it can be choosen
for any positive number.

Letususe #n=1, therefore #ne=1

9/17/2019 P-ITEEA-0011 Lecture 2 28

Perceptron Convergence theorem (4)

« We will calculate |w(n+2)|" in two ways, and give an upper

and a lower boundary, and it will turn out that an n,_, exists,

and beyond that the lower boundary is higher than the upper

boundary (squeeze theorem, sandwitch lemma (kézrefogdsi
elv, rendér elv))

9/17/2019 P-ITEEA-0011 Lecture 2 29

Perceptron Convergence theorem (5) ==
lower limit (1) N

According to the learning method, the presented input vectors are added up:
w(n+1) =w(0) + x(0) + x(2) +...+ x(n) w(0)=0

Multiply it with w," from the left:
w, w(n+1) =w, x(0) +w, X(1) +...+w, x(n)

O<a< WZ x(j) Because each input vector (or its opposite) were
selected that way.

O<a= min_ w x(n)
x(Me{X" X7}

w, w(n+1) > na

9/17/2019 P-ITEEA-0011 Lecture 2 30

Perceptron Convergence theorem (6) ==
lower limit (2) N

w, w(n+1) > na We apply Cauchy Schwarty inequality HaH2 HbH2 ZHaT bH2

HW H [w(n +1)H

Lower limit:

wn+1)f = 1<

HWgHZ Lower limit proportional with n2

9/17/2019 P-ITEEA-0011 Lecture 2 31

Perceptron Convergence theorem (7)

upper limit (1) A
Let us have a different synthetization approach of w(n+1):
w(k +1) = w(k) + x(k) fork=0...n

Squared Euclidian norm:
[wik +D) =wK)|” +[x(K)| +2w(k)" x(k)

w(k)" x(k) <0 Because each input vector (or its opposite) were
selected that way.
[wik + D" < Jw(f + (k)|

) , , ork=0...n
Jw(k +2)]" = |w(k)[" < x (k)]

9/17/2019 P-ITEEA-0011 Lecture 2 32

Perceptron Convergence theorem (8)

upper limit (2) N
[k +)" — k)| <|x&)[Telescoping sum: YL (@i41 — @) = ape1 — &
Example:Y; (aj;q1 — ;) = a5 — a+
Summing up the upper term: »d3 — a5 +
n)) n) 764 _%-l_
> (o +ff ~waof)< Y fxco a5 44
k=0 k=0 =ds —aq
Note that there is a telescoping sum in the left hand side.
lw(n + DII* = [lw(0)]I* 0<fB= max Hx(k)H2
x(k)e{X* X7}
/ lw(n +DII? < (n+ 1B
lw(0)]]?=0 Upper limit linearly proportional with n

9/17/2019 P-ITEEA-0011 Lecture 2 33

Perceptron Convergence theorem (9)
comparing upper and lower limits

jw(n+1)| — W@+ DI < (+ D
w2
N HWO H

Linear upper limit and squared lower limit cannot grow unlimitedly

N..x Should exist

Blw |
2

(04

N =

max

9/17/2019 P-ITEEA-0011 Lecture 2 34

