
Outline 

• Properties of the perceptron
• Input-output pairs
• Perceptron learning method
• Perceptron learning example
• Proof of convergence
• Good material:

http://hagan.okstate.edu/4_Perceptron.pdf
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xi : input vector
wki : weight coefficient vector  of neuron k
bk : bias value of neuron k
ok : output value of neuron k
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• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• A b value biases the sum 
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function applied

The Perceptron

sign() sigm()



Neural Networks

Perceptron is an Input   Output        device
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As opposed to Traditional Computers 
where

- the math of the functionality is known
- the known math should be programmed

At Neural Networks

- the math behind the functionality is unknown 
- the functionality is “illustrated” with examples



Function illustrated by examples
• Given a set of input-output pairs

xj  dj (xj: input vector;    dj: desired output)

• Number of input vectors
– Finite/limited set (e.g. AND function)

– Equivalent with a look-up-table (LUT), math known
– Mathematically it is correct to define a function by listing all the IO pairs

• Goal: generate a simpler than LUT decision making device through learning

– Infinite/open set (customers of a bank asking for a loan)
– Math behind is unknown, cannot be coded directly

• Goal: generate the function through learning
• It should predict well the output of a previously

unknown/untested input (GENERALIZATION)
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X d

# age gender debt salary

1 25 M(1) 25 100 Y(1)

2 22 F(2) 18 80 Y(1)

3 65 M(1) 3000 200 N(0)

. . . . . .

. . . . . .

X d

# X1 X2

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Good news: we can use the same learning/training method!!!



Linear separability

• Today, we assume that the IO sets are linearly separable

• The decision boundary is a hyperplane 
defined:
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0T
w x

• Positive side of the hyperplane is classified: +1 (yes)

• Negative side of the hyperplane is classified : 0 (no).



How would you 
classify this data?

X2

X
1

Which boundary surface to use, if there are 
many?
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How would you 
classify this data?

X2

X
1

Which boundary surface to use, if there are 
many?
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Any of these would 
be fine..

..but which is best?

X2

X
1

Which boundary surface to use, if there are 
many?
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Maximum Margin:
Define the margin
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
data point.

X2

X
1
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Which boundary surface to use, if there are 
many?



X2

X
1
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Which boundary surface to use, if there are 
many?

Maximum Margin:
Define the margin
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
data point.



What does learning mean?

9/17/2019 P-ITEEA-0011          Lecture 2 12

• Given an annotated dataset    
xj  dj

• Given the parametric  equation of 
the perceptron

• Goal: find the optimal wopt

weights (parameters), where for 
each j

𝑦 = 𝑠𝑖𝑔𝑛(𝐰𝑇𝐱)

𝑑𝑗 = 𝑠𝑖𝑔𝑛(𝐰𝑜𝑝𝑡
𝑇 𝐱𝑗)
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The learning algorithm: Datasets
• Training set

• Set of input – desired output pairs
• Will be used for training

• Test set
• Used, when we have large set of input vectors (not used today)
• Set of input – desired output pairs
• Will be used for testing and scoring the result

• We assumed that X+ and X− must be linearly separable

• We are looking for an optimal parameter set:
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• We have to develop a recursive algorithm called learning, 
which can learn the weight step by step, based on observing 
– the (i) input,

– the (ii) weight vector, 

– the (iii) desired output, and 

– the (iv) actual output of the system. 

• This can be described formally as follows:

The learning algorithm: Recursive algorithm 

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘 → 𝐰opt
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The learning algorithm: Perceptron Learning Algorithm

• In a more ambitious way it can be called 
intelligent, because 
• perceptron can learn through examples (adapt),

• even the function parameters are fully hidden.

• Perceptron learning was introduced by 
Frank Rosenblatt 1958
– Built a 20x20 image sensor 

– With analog perceptron

– 400 weights controlled by electromotors
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The learning algorithm:  Recursive steps

1. Initialization. 
Set w(0)=0 or w(0)=rand

2. Activation. 
Select a  xk  dk   pair

3. Computation of actual response

4. Adaptation of the weight vector

5. Continuation
Until all responses of the perceptron are OK

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝑦 𝑘 = 𝑠𝑖𝑔𝑛 𝑤𝑇 𝑘 𝑥 𝑘



Weight update: very simple example

• Given a 3 input vector example

• Assume that bias is zero
(decision boundary will cross the origo)

• Random initialization
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𝐱1 =
1
2
, 𝑑1 = 1;

𝐱2 =
−1
2

, 𝑑2 = 0;

𝐱3 =
0
−1

, 𝑑3 = 0;

𝐰𝑇(1) = 1 −0.8 ;

Remember: the weight vector is orthogonal 
to the decision boundary!!!
Decision boundary:     x1 - 0.8x2 = 0
Its orthogonal vector is:    (1, -0.8)



Weight update: very simple example

• Test with the first input vector

The result is not OK!  Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)
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𝐱1 =
1
2
, 𝑑1 = 1;

𝐰𝑇(1) = 1 −0.8 ;

𝑦1(1) = 𝑠𝑖𝑔𝑛 𝑤𝑇 1 𝑥1 = 𝑠𝑖𝑔𝑛 1 −0.8
1
2

= 𝑠𝑖𝑔𝑛 1 − 1.6 = 0

Idea: add the vector pointing to the 
positively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it towards the point!
w(k+1)=w(k)+x1

𝐰𝑇 2 = 1 + 1 −0.8 + 2 = 2 1.2 ;

dj-yj > 0  



Weight update: very simple example

• Test with the second input vector

The result is not OK!  Negative misclassification: Instead of 0, the result is 1!!

9/17/2019 P-ITEEA-0011          Lecture 2 19

𝐱2 =
−1
2

, 𝑑1 = 0;

𝐰𝑇(2) = 2 1.2 ;

Idea: subtract the vector pointing to the 
negatively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x2

𝐰𝑇 3 = 2 − (−1) 1.2 − 2 = 3 −0.8 ;

𝑦2(2) = 𝑠𝑖𝑔𝑛 𝑤𝑇 2 𝑥2 = 𝑠𝑖𝑔𝑛 2 1.2
−1
2

= 𝑠𝑖𝑔𝑛 −2 + 2.4 = 1

dj-yj < 0  



Weight update: very simple example

• Test with the third input vector

The result is not OK!  Negative misclassification: Instead of 0, the result is 1!!
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𝐰𝑇(3) = 3 −0.8 ;

Again: subtract the vector pointing to the 
negatively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it away the point!
w(k+3)=w(k+2)-x3

𝐰𝑇 4 = 3 − 0 −0.8 − (−1) = 3 0.2 ;

𝑦3(3) = 𝑠𝑖𝑔𝑛 𝑤𝑇 3 𝑥3 = 𝑠𝑖𝑔𝑛 3 −0.8
0
−1

= 𝑠𝑖𝑔𝑛 0 + 0.8 = 1

𝐱3 =
0
−1

, 𝑑3 = 0; dj-yj < 0  



Weight update: very simple example

• Start again:
– Test with the again with the first vector

The result is OK!

– Do not modify!!!

– Test with the again with the second vector

The result is OK!
– Do not modify!!!

– Test with the again with the third vector

The result is OK!
– Do not modify!!!

• Since all input vectors are correctly classified: we are ready
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Formalization of the update rules

• Positive misclassification :  ADD
𝜀 = dj-yj = 1                               w(k+1)=w(k)+xj

• Negative misclassification :   SUBTRACT
𝜀 = dj-yj = -1                                  w(k+1)=w(k)-xj

• Correct classification :    DO NOTHING
𝜀 = dj-yj = 0                          w(k+1)=w(k)

• In general:
w(k+1)=w(k)+ 𝜀 xj
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The learning algorithm:   Adaptation

We were looking for a recursive function:

In general:  

where    is the error function

and 
𝜂 is the learning rate   
(𝜂 controls the learning speed and should be positive)
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𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝐰 𝑘 + 1 = 𝐰 𝑘 + 𝜀𝜂𝒙𝑗



AND
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Weight update strategy

• Apply all the input vectors in one after the others, 
selecting them randomly

• Instance update
– Update the weights after each input

• Batch update
– Add up the modifications
– Update the weights with the sum of the modifications, 

after all the inputs were applied

• Mini batch
– Select a smaller batch of input vectors, and do with that as 

in the batch mode
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Perceptron Convergence theorem (1)

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore  wo (stands

for woptimal) exists:

- Let us denote   ෤𝑥 = −𝑥

For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,  
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

1:0:   dxwXx T

o

1:0:   dxwXx T

o

1:0~:
~~   dxwXx T

o

0

http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf


Perceptron Convergence theorem (2)
• Idea: 

– During the training, the network will be activated with those input 
vectors (one after the other), where the decision is wrong, hence non 
zero adaptation is needed: 

– Note: The error function is always positive (               )
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1,1,0)()(:)(   dyjxjwXjx T
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~
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0
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Perceptron Convergence theorem (3)
• According to the learning method: 

• w(n+1)=w(0)+ηx(0)+ηx(1) +ηx(2) +ηx(3)+... +ηx(n)

– where

or

– The decision boundary will be:

ηwTx=0     

which means that η is a scaling factor, therefore it can be choosen

for any positive number. 

Let us use η=1,    therefore ηε=1
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1,1,0)()(:)(   dyjxjwXjx T

1,1,0)()(:
~

)(   dyjxjwXjx T



Perceptron Convergence theorem (4)

• We will calculate in two ways, and give an upper
and a lower boundary, and it will turn out that an nmax exists, 
and beyond that the lower boundary is higher than the upper
boundary (squeeze theorem, sandwitch lemma (közrefogási 
elv, rendőr elv))
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Perceptron Convergence theorem (5)
lower limit (1)

9/17/2019 P-ITEEA-0011          Lecture 2 30

)(...)1()0()0()1( nxxxwnw 

According to the learning method, the presented input vectors are added up:

Multiply it with wo
T from the left:

w(0)=0
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o Because each input vector (or its opposite) were
selected that way.
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Perceptron Convergence theorem (6)
lower limit (2) 
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Lower limit:

Lower limit proportional with n2



Perceptron Convergence theorem (7)
upper limit (1)
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)()()1( kxkwkw 

Let us have a different synthetization approach of w(n+1):

Squared Euclidian norm:

for k= 0 … n

Because each input vector (or its opposite) were
selected that way.

)()(2)()()1(
222

kxkwkxkwkw T

0)()( kxkw T

222
)()()1( kxkwkw 

for k= 0 … n
222

)()()1( kxkwkw 



Perceptron Convergence theorem (8)
upper limit (2)
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Note that there is a telescoping sum in the left hand side.

Summing up the upper term: 

222
)()()1( kxkwkw 

  
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22
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

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n
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0

2
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Upper limit linearly proportional with n

𝑤(𝑛 + 1) 2 − 𝑤(0) 2= 𝑤(𝑛 + 1) 2

Telescoping sum: σ𝑖=1
𝑛 𝑎𝑖+1 − 𝑎𝑖 = 𝑎𝑛+1 − 𝑎1

Example:σ𝑖=1
4 𝑎𝑖+1 − 𝑎𝑖 = 𝑎2 − 𝑎1+

+𝑎3 − 𝑎2 +
+𝑎4 − 𝑎3 +
+𝑎5 − 𝑎4=
= 𝒂𝟓 − 𝒂𝟏

𝑤(0) 2=0

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽



Perceptron Convergence theorem (9)
comparing upper and lower limits
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Linear upper limit and squared lower limit cannot grow unlimitedly

nmax should exist
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𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽


