
Outline

• Properties of the perceptron
• Input-output pairs
• Perceptron learning method
• Perceptron learning example
• Proof of convergence
• Good material:

http://hagan.okstate.edu/4_Perceptron.pdf

9/17/2019 P-ITEEA-0011 Lecture 2 2

http://hagan.okstate.edu/4_Perceptron.pdf

9/17/2019. P-ITEEA-0011 Lecture 2 3

xi : input vector
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 



• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• A b value biases the sum
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function applied

The Perceptron

sign() sigm()

Neural Networks

Perceptron is an Input  Output device

9/17/2019 P-ITEEA-0011 Lecture 1 4

As opposed to Traditional Computers
where

- the math of the functionality is known
- the known math should be programmed

At Neural Networks

- the math behind the functionality is unknown
- the functionality is “illustrated” with examples

Function illustrated by examples
• Given a set of input-output pairs

xj  dj (xj: input vector; dj: desired output)

• Number of input vectors
– Finite/limited set (e.g. AND function)

– Equivalent with a look-up-table (LUT), math known
– Mathematically it is correct to define a function by listing all the IO pairs

• Goal: generate a simpler than LUT decision making device through learning

– Infinite/open set (customers of a bank asking for a loan)
– Math behind is unknown, cannot be coded directly

• Goal: generate the function through learning
• It should predict well the output of a previously

unknown/untested input (GENERALIZATION)

9/17/2019 P-ITEEA-0011 Lecture 2 5

X d

age gender debt salary

1 25 M(1) 25 100 Y(1)

2 22 F(2) 18 80 Y(1)

3 65 M(1) 3000 200 N(0)

.

.

X d

X1 X2

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Good news: we can use the same learning/training method!!!

Linear separability

• Today, we assume that the IO sets are linearly separable

• The decision boundary is a hyperplane
defined:

9/17/2019 P-ITEEA-0011 Lecture 2 6

0T
w x

• Positive side of the hyperplane is classified: +1 (yes)

• Negative side of the hyperplane is classified : 0 (no).

How would you
classify this data?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 7

How would you
classify this data?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 8

Any of these would
be fine..

..but which is best?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 9

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

X2

X
1

9/17/2019 P-ITEEA-0011 Lecture 2 10

Which boundary surface to use, if there are
many?

X2

X
1

9/17/2019 P-ITEEA-0011 Lecture 2 11

Which boundary surface to use, if there are
many?

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

What does learning mean?

9/17/2019 P-ITEEA-0011 Lecture 2 12

• Given an annotated dataset
xj  dj

• Given the parametric equation of
the perceptron

• Goal: find the optimal wopt

weights (parameters), where for
each j

𝑦 = 𝑠𝑖𝑔𝑛(𝐰𝑇𝐱)

𝑑𝑗 = 𝑠𝑖𝑔𝑛(𝐰𝑜𝑝𝑡
𝑇 𝐱𝑗)

9/17/2019. P-ITEEA-0011 Lecture 2 13

The learning algorithm: Datasets
• Training set

• Set of input – desired output pairs
• Will be used for training

• Test set
• Used, when we have large set of input vectors (not used today)
• Set of input – desired output pairs
• Will be used for testing and scoring the result

• We assumed that X+ and X− must be linearly separable

• We are looking for an optimal parameter set:

 

 

 : 1

 : 1





  

  

X d

X d

x

x

 

 

T

opt

T

opt

 : 0 ,

 : 0 .





 

 

X

X

x w x

x w x

0

>

9/17/2019. P-ITEEA-0011 Lecture 2 14

• We have to develop a recursive algorithm called learning,
which can learn the weight step by step, based on observing
– the (i) input,

– the (ii) weight vector,

– the (iii) desired output, and

– the (iv) actual output of the system.

• This can be described formally as follows:

The learning algorithm: Recursive algorithm

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘 → 𝐰opt

9/17/2019. P-ITEEA-0011 Lecture 2 15

The learning algorithm: Perceptron Learning Algorithm

• In a more ambitious way it can be called
intelligent, because
• perceptron can learn through examples (adapt),

• even the function parameters are fully hidden.

• Perceptron learning was introduced by
Frank Rosenblatt 1958
– Built a 20x20 image sensor

– With analog perceptron

– 400 weights controlled by electromotors

9/17/2019. P-ITEEA-0011 Lecture 2 16

The learning algorithm: Recursive steps

1. Initialization.
Set w(0)=0 or w(0)=rand

2. Activation.
Select a xk  dk pair

3. Computation of actual response

4. Adaptation of the weight vector

5. Continuation
Until all responses of the perceptron are OK

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝑦 𝑘 = 𝑠𝑖𝑔𝑛 𝑤𝑇 𝑘 𝑥 𝑘

Weight update: very simple example

• Given a 3 input vector example

• Assume that bias is zero
(decision boundary will cross the origo)

• Random initialization

9/17/2019 P-ITEEA-0011 Lecture 2 17

𝐱1 =
1
2
, 𝑑1 = 1;

𝐱2 =
−1
2

, 𝑑2 = 0;

𝐱3 =
0
−1

, 𝑑3 = 0;

𝐰𝑇(1) = 1 −0.8 ;

Remember: the weight vector is orthogonal
to the decision boundary!!!
Decision boundary: x1 - 0.8x2 = 0
Its orthogonal vector is: (1, -0.8)

Weight update: very simple example

• Test with the first input vector

The result is not OK! Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)

9/17/2019 P-ITEEA-0011 Lecture 2 18

𝐱1 =
1
2
, 𝑑1 = 1;

𝐰𝑇(1) = 1 −0.8 ;

𝑦1(1) = 𝑠𝑖𝑔𝑛 𝑤𝑇 1 𝑥1 = 𝑠𝑖𝑔𝑛 1 −0.8
1
2

= 𝑠𝑖𝑔𝑛 1 − 1.6 = 0

Idea: add the vector pointing to the
positively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it towards the point!
w(k+1)=w(k)+x1

𝐰𝑇 2 = 1 + 1 −0.8 + 2 = 2 1.2 ;

dj-yj > 0

Weight update: very simple example

• Test with the second input vector

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

9/17/2019 P-ITEEA-0011 Lecture 2 19

𝐱2 =
−1
2

, 𝑑1 = 0;

𝐰𝑇(2) = 2 1.2 ;

Idea: subtract the vector pointing to the
negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x2

𝐰𝑇 3 = 2 − (−1) 1.2 − 2 = 3 −0.8 ;

𝑦2(2) = 𝑠𝑖𝑔𝑛 𝑤𝑇 2 𝑥2 = 𝑠𝑖𝑔𝑛 2 1.2
−1
2

= 𝑠𝑖𝑔𝑛 −2 + 2.4 = 1

dj-yj < 0

Weight update: very simple example

• Test with the third input vector

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

9/17/2019 P-ITEEA-0011 Lecture 2 20

𝐰𝑇(3) = 3 −0.8 ;

Again: subtract the vector pointing to the
negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+3)=w(k+2)-x3

𝐰𝑇 4 = 3 − 0 −0.8 − (−1) = 3 0.2 ;

𝑦3(3) = 𝑠𝑖𝑔𝑛 𝑤𝑇 3 𝑥3 = 𝑠𝑖𝑔𝑛 3 −0.8
0
−1

= 𝑠𝑖𝑔𝑛 0 + 0.8 = 1

𝐱3 =
0
−1

, 𝑑3 = 0; dj-yj < 0

Weight update: very simple example

• Start again:
– Test with the again with the first vector

The result is OK!

– Do not modify!!!

– Test with the again with the second vector

The result is OK!
– Do not modify!!!

– Test with the again with the third vector

The result is OK!
– Do not modify!!!

• Since all input vectors are correctly classified: we are ready

9/17/2019 P-ITEEA-0011 Lecture 2 21

Formalization of the update rules

• Positive misclassification : ADD
𝜀 = dj-yj = 1 w(k+1)=w(k)+xj

• Negative misclassification : SUBTRACT
𝜀 = dj-yj = -1 w(k+1)=w(k)-xj

• Correct classification : DO NOTHING
𝜀 = dj-yj = 0 w(k+1)=w(k)

• In general:
w(k+1)=w(k)+ 𝜀 xj

9/17/2019 P-ITEEA-0011 Lecture 2 22

9/17/2019. P-ITEEA-0011 Lecture 2 23

The learning algorithm: Adaptation

We were looking for a recursive function:

In general:

where is the error function

and
𝜂 is the learning rate
(𝜂 controls the learning speed and should be positive)

      k d k y k

 
 

 

1 f belongs to class X
,

1 if belongs to class X






 



i k
d k

k

x

x

0

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝐰 𝑘 + 1 = 𝐰 𝑘 + 𝜀𝜂𝒙𝑗

AND

9/17/2019 P-ITEEA-0011 Lecture 2 24

Weight update strategy

• Apply all the input vectors in one after the others,
selecting them randomly

• Instance update
– Update the weights after each input

• Batch update
– Add up the modifications
– Update the weights with the sum of the modifications,

after all the inputs were applied

• Mini batch
– Select a smaller batch of input vectors, and do with that as

in the batch mode
9/17/2019 P-ITEEA-0011 Lecture 2 25

9/17/2019. P-ITEEA-0011 Lecture 2 26

Perceptron Convergence theorem (1)

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore wo (stands

for woptimal) exists:

- Let us denote ෤𝑥 = −𝑥

For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

1:0:   dxwXx T

o

1:0:   dxwXx T

o

1:0~:
~~   dxwXx T

o

0

http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

Perceptron Convergence theorem (2)
• Idea:

– During the training, the network will be activated with those input
vectors (one after the other), where the decision is wrong, hence non
zero adaptation is needed:

– Note: The error function is always positive ()

9/17/2019 P-ITEEA-0011 Lecture 2 27

1,1,0)()(:)(  dyjxjwXjx T

1,1,0)()(:
~

)(  dyjxjwXjx T

2

0

0

1

Perceptron Convergence theorem (3)
• According to the learning method:

• w(n+1)=w(0)+ηx(0)+ηx(1) +ηx(2) +ηx(3)+... +ηx(n)

– where

or

– The decision boundary will be:

ηwTx=0

which means that η is a scaling factor, therefore it can be choosen

for any positive number.

Let us use η=1, therefore ηε=1

9/17/2019 P-ITEEA-0011 Lecture 2 28

1,1,0)()(:)(  dyjxjwXjx T

1,1,0)()(:
~

)(  dyjxjwXjx T

Perceptron Convergence theorem (4)

• We will calculate in two ways, and give an upper
and a lower boundary, and it will turn out that an nmax exists,
and beyond that the lower boundary is higher than the upper
boundary (squeeze theorem, sandwitch lemma (közrefogási
elv, rendőr elv))

9/17/2019 P-ITEEA-0011 Lecture 2 29

2
)1(nw

Perceptron Convergence theorem (5)
lower limit (1)

9/17/2019 P-ITEEA-0011 Lecture 2 30

)(...)1()0()0()1(nxxxwnw 

According to the learning method, the presented input vectors are added up:

Multiply it with wo
T from the left:

w(0)=0

)(...)1()0()1(nxwxwxwnww T

o

T

o

T

o

T

o 

nnwwT

o )1(

)(0 jxwT

o Because each input vector (or its opposite) were
selected that way.

)(min0
}

~
,{)(

nxwT

o
XXnx 



Perceptron Convergence theorem (6)
lower limit (2)

9/17/2019 P-ITEEA-0011 Lecture 2 31

nnwwT

o )1(We apply Cauchy Schwarty inequality
222

baba T

22
222

0)1()1(nnwwnww T

o

T 

2

0

22
2

)1(
Tw

n
nw




Lower limit:

Lower limit proportional with n2

Perceptron Convergence theorem (7)
upper limit (1)

9/17/2019 P-ITEEA-0011 Lecture 2 32

)()()1(kxkwkw 

Let us have a different synthetization approach of w(n+1):

Squared Euclidian norm:

for k= 0 … n

Because each input vector (or its opposite) were
selected that way.

)()(2)()()1(
222

kxkwkxkwkw T

0)()(kxkw T

222
)()()1(kxkwkw 

for k= 0 … n
222

)()()1(kxkwkw 

Perceptron Convergence theorem (8)
upper limit (2)

9/17/2019 P-ITEEA-0011 Lecture 2 33

Note that there is a telescoping sum in the left hand side.

Summing up the upper term:

222
)()()1(kxkwkw 

  



n

k

n

k

kxkwkw
0

2

0

22
)()()1(





n

k

kxnwwnw
0

2
)()1()0()1(

Upper limit linearly proportional with n

𝑤(𝑛 + 1) 2 − 𝑤(0) 2= 𝑤(𝑛 + 1) 2

Telescoping sum: σ𝑖=1
𝑛 𝑎𝑖+1 − 𝑎𝑖 = 𝑎𝑛+1 − 𝑎1

Example:σ𝑖=1
4 𝑎𝑖+1 − 𝑎𝑖 = 𝑎2 − 𝑎1+

+𝑎3 − 𝑎2 +
+𝑎4 − 𝑎3 +
+𝑎5 − 𝑎4=
= 𝒂𝟓 − 𝒂𝟏

𝑤(0) 2=0

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽

Perceptron Convergence theorem (9)
comparing upper and lower limits

9/17/2019 P-ITEEA-0011 Lecture 2 34

Linear upper limit and squared lower limit cannot grow unlimitedly

nmax should exist

2

0

22
2

)1(
Tw

n
nw




n

2
)1(nw

2

2

0

max


 w
n 

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽

